
ELSEVIER 

Available online at www.sciencedirect.com 

S C I E N C E  ~ _ ~ D I R E C T  ~ APPL|E[3  
M A T H E M A T I C S  

A N D  M E C H A N I C S  

www.elsevier.com/locate/j appmathmech 

Journal of Applied Mathematics and Mechanics 69 (2005) 366-379 

A CNOIDAL WAVE IN A PLANE WALL JET OF 
AN INCOMPRESSIBLE VISCOUS FLUID? 

V. I. Z H U K  

MOSCOW 

e-mail: zhuk@ccas.ru 

(Received 1 December 2004) 

It is shown that the situation of a non-classical boundary layer with a self-induced pressure is realized in the sublayer of a tangential 
jet stream adjacent to a plane solid surface, where a zone of perturbed non-linear motion is localized. In fact, the existence of 
a class of comparatively large amplitude perturbations, when a flow of this type acquires a multistage structure, has been established. 
The assumptions under which, in the case of finite pulsation amplitudes, the evolution of the wave fields obeys the Korteweg- 
de Vries equation are discussed. A non-linear oscillating solution of the Korteweg-de Vries equation is considered in the form 
of a cnoidal wave, which provides an example of a periodic critical layer adjacent to the wall past which the flow occurs. Under 
the assumptions are made, the above-mentioned critical layer decomposes into a main non-linear inviscid part and a thin viscous 
boundary sublayer. The following result is formulated: the condition for the existence of a periodic solution in the viscous sublayer 
reduces the set of permissible values of the cnoidai wave parameters. © 2005 Elsevier Ltd. All rights reserved. 

1. I N T R O D U C T I O N  

A steady two-dimensional flow in a laminar jet of an incompressible viscous fluid which is bounded 
from below by a plane screen has a tangential component of the velocity u* = u*Uo(2, Ym) with the 
profile show in Fig. 1. Henceforth, dimensional quantities are indicated with asterisks and the maximum 
velocity in some fixed section of the jet x* = L*, for example, can be chosen as the constant u* defining 
the velocity scale. The domains x* = L* (1 + 37) will be considered, the length of which L*2, 2 ~ 1 are 
much smaller than the characteristics length L* of the flow along the x* axis, coinciding with the solid 
wall, of the Cartesian system of coordinates {x*, y*}. The function U0 is therefore subsequently 
considered to depend solely on the single spatial coordinate along the normal to the wall Ym. 

In order to clarify what has been said above, we will introduce the Reynolds number Re -- 9*u*L*/g*, 
where 9" and g* are the density and coefficient of viscosity of the fluid and we will assume that Re ~ oo. 
Then, the assumption that a steady flow is formed by viscous forces implies an estimate Re-1/2L * for 
the characteristic dimension of the jet along the transverse coordinate y* (as a corollary of the balancing 
of the inertial and viscous terms in the Navier-Stokes equations). This estimate means that the (fast) 

1/2 , 1 ,~ variable Ym = Re L2;- y '  is of the order of unity in the main part of the jet. The derivatives of the 
function U0 with respect to the spatial coordinates 2 = (x* - L*)L *q, ~ = y*L *-1 are of different orders: 

~Uo n 1/20 U0 0U° - O(1), - t~e . . . .  ©(Re 1/2) 
a~ 0~ aYm 

When account is taken of the last formulae for the derivatives, the equation of continuity yields the 
quantity v*u *-1 = ©(Re -1/2) for the vertical component v* of the velocity of the steady motion of the 
fluid in the jet. 

The estimate for ~* given above, and also for the derivatives of the velocity U0 illustrates the fact 
that the streamlines in the jet are almost parallel to the plane wall and, consequently, a dependence 
of the function U0 on the longitudinal variable 2 is only manifested at distances which are comparable 

tPrikl. Mat. Mekh. Vol. 69, No. 3, pp. 404-418, 2005. 
0021-8928/S--see front matter. © 2005 Elsevier Ltd. All rights reserved. 
doi: 10.1016/j.jappmathmech.2005.05.017 



A cnoidal wave in a plane wall jet of an incompressible viscous fluid 367 

with the length scale L*,  and is unimportant in domains with a length of the order of the thickness of 
the jet Req/2L *, Re -+ oo. In this sense, the jet stream being considered is analogous to the flow in a 
boundary layer with the sole difference that the velocity not only vanishes on the wall but also in the 
outer layer of the jet: 

1 2 
U0--+0, Ym-+0; U 0 = ~,lYm+~)~2Ym + .... Ym-+O (1.1) 

On introducing, in addition to the above-mentioned variables 2, 29, the time [ = L*qu* t  *, the 
components ti = u*u *q, 5 = v*u *q of the velocity vector f = {it = aS} and the excess pressure 
/3 = (p* -p*)p*qu *-2, wherep* is the pressure on the outer edge of the jet, we write the Navier-Stokes 
equations in the dimensionless form 

0 V + ( v . V ) v = - V ~ + R e q V Z v ,  (V.v)  = 0 ,  V = { ~  3}  3-~ ,~-~ (1.2) 

We shall seek a solution of Eqs (1.2) when Re ~ oo as the sum of a main steady solution of the 
form of (1.1) and a perturbation which has been introduced into the flow by some means or other. 
Suppose X is the characteristics length (along the ~? axis) of the perturbation wave and that the amplitude 
of the perturbation of the longitudinal component of the velocity it is of the order of a ~ 1. 

Since the main part of the jet has a thickness of the order of Re -m, the estimate for the vertical 
component of the velocity 

~) = O(Re-~/2a~. -1) (1.3) 

follows from the equation of continuity and, from the projection of the equation of motion (1.2) onto 
the 35 axis, taking account of this estimate, we obtain an estimate for the pressure perturbation 

= O(Re-laK -2) (1.4) 

In the non-linear domain close to the surface past which the flow occurs, where, by virtue of the 
condition when Ym ~ 0 in relations (1.1), the main velocity U0 is of the order of its own perturbation, 
projection of the equation of motion onto the J? axis gives 

= O(a 2) (1.5) 

Comparing estimates (1.4) and (1.5), we obtain an estimate for the length of the perturbation wave 

X = O(Re-1/2a -1/2) (1.6) 

while the magnitude of the characteristic time 

"/ = O(Re-1/2a -3/2) 

follows from the equations of motion. 
If the independent parameters Re and a satisfy the condition 

aRe >> 1 

(1.7) 

than, by virtue of estimate (1.6), which determines the longitudinal scale of the perturbations, the 
characteristic length is 

K ~ 1 (1.8) 

Condition (1.8) will be satisfied everywhere below which, as already pointed out, enables us to ignore 
the dependence of the function U0 on the variable 2 in domains with a length of the order of X. In 
accordance with this, we put U0 = Uo(Ym) and use estimates (1.3)-(1.8), which fix the class of perturbations 
being considered, as guiding considerations for the expansion of the Navier-Stokes equations in formal 
asymptotic series. 
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Fig. 1 

7v 

The above asymptotic estimates of the space-time and amplitude parameters of the perturbations 
are characteristic of the so-called free interaction region [1-5[. The concept of free interaction was 
developed [6-9] for wall jets and, also, for flows with similar profiles for the longitudinal component 
of the velocity. Here, the asymptotic description was based on the separation within the jet of two layers, 
arranged one above the other (levels or decks) and, also, a weakly perturbed domain which is immediately 
adjacent to the jet from above (domain 1 in Fig. 1). A generalization of this triple level-model to unsteady 
motions has been proposed in [10]. A triple level structure does not arise for arbitrary ~ --+ 0 and Re --+ ~o, 
but for value which are associated by the completely determinate order relation [6-10] 

= Re -1/7 (1.9) 

Below we consider the case when the amplitude parameter o~, while remaining small, is greater than 
the order of magnitude of the estimate from the right-hand side of relation (1.9). An increase in the 
amplitude parameter leads to a change in the structure of the interaction region, namely the separation 
of a lower non-linear boundary sublayer (in the above-mentioned triple level model) into viscous and 
non-viscous parts, and the pattern of the flow field therefore becomes a quadruple-level pattern. It will 
be seen from what follows that, in this case, the mechanism of the evolution of the perturbations is 
described by inviscid equations which are integrated independently of the equations for the viscous 
boundary sublayer. However, the existence of a regular solution (for all finite points) in the viscous 
sublayer actually serves as an internal criterion for realizing this perturbed flow scheme which has been 
modified compared with the scheme available in the literature [6-10]. 

2. THE Q U A D R U P L E - L E V E L  ASYMPTOTIC S T R U C T U R E  OF 
THE P E R T U R B E D  VELOCITY FIELD 

In accordance with estimates (1.6) and (1.7), we introduce the new independent variables 

T = Rel/Zo~3/2t, X = Rel/20~ 1/2-x, Ym = Rel/23~ (2.1) 

and, in the main layer of the stream, that is, in domain 2 in Fig. 1, where [T, X ,  Ym] = O(1), we represent 
the solution of the Navier-Stokes equations in the form 

~t = Uo(Ym) + U~Ulm(T , X, Era) + O~2U2m( T' X, Era) + "'" 

I) = O~3/21)lm(T, X, Ym) + °~5/21)2m( T, X, Ym) + "'" (2.2) 

]3 O~2plm(T, X, Ym) + 3 = O~ P 2 m ( T ,  X ,  Ym) + . . .  
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We now introduce expansion (2.2) into Eqs (1.2) and retain the leading terms in these equations. 
Then, we have 

Outm dU o 
Uo-g ~ + v~,~g-f-~ = o, ODlm aPlm OUlm Ol)lm 

U O " - ~  = OY m ' a--'X- + ~ = 0 (2.3) 

as the system of equations of the first approximation. 
The solution of system (2.3) is determined, apart from the arbitrary functionAl = AI(T, X), in the 

following manner 

dU o 
Ulm = AI (T ,X) '~m,  

aA l a2AI Ym 
Dim -- OX U°(Ym) '  Vim = a X  2 f v20(~)a~ (2.4) 

Expressions (2.4) are obtained taking account of the condition Plm ~ 0 on the outer boundary 
(Ym -~ + ~)  of domain 2. The arbitrary function must satisfy the condition AffT,  X )  ~ 0 when X--+ --~, 
which ensures that the perturbations [Ulm , "Dlrn,Plm] --+ 0 decay at infinity upstream along the flow from 
the domain being considered. The meaning of solution (2.4) lies in the fact that the angular coefficient 
329(f, 2)/22 = ~5~ q of a streamline 29 = 29(i, 2) of the perturbed jet stream in domain 2 is, according to 
expansions (2.2), equal to O({x 5/2) with an accuracy o~3/~l)lrngo 1 = -{x3/2aA1/OX " Integration of the relation 

Oy(t, .~) _ ll2aYm(T, X )  ~9 (x 
0;c aX ?, 

gives the equation of the streamline 

Y~ = Y _ = - ~ A I ( T , X  ) 

The constant of integration Y~ fixes the streamline, giving its position when X--+ -oo, Af fT ,  X) ~ O. 
In fact, the parameter Y~ establishes the asymptotic form of the streamline in the unperturbed flow 
when X ~ --~, where the velocity vector is eollinear with the wall: ft = Uo(Ym), 03 = 0. Hence, the function 
AI(T, X) is the magnitude of the instantaneous displacement of a streamline in domain 2 with respect 
to its unperturbed position. 

Using the second relation of (1.1), we write the limiting form of solution (2.2), (2.4) when Ym --+ 0, 
that is near the restricting flow of the solid surface 

2 +~ 
3/2, aAi,., . 22 A 1 ¢ 

~ = )~IY,. + ~qaA~ + .... b = - a  ~,1-3--~ jm ,- .... ~ = - a  -~ - -  j U~({)d~ + ... (2.5) 
0 

The first two terms of the asymptotic representation (2.5) for t~ become of the same order of smallness 
if Ym = O(a). The last estimate gives the thickness of the non-linear sublayer located in the bottom 
part of domain 2, where the perturbation of the velocity is of the same order as the velocity itself. We 
shall call this sublayer domain 3 (Fig. 1). The scales for the time and longitudinal coordinate are the 
same in domains 2 and 3 and the new transverse coordinate 

-1 
Y~ = o~ Ym (2.6) 

in domain 3 is of the order of unity. Formulae (2.5) show that, instead of representation (2.2), it is 
necessary to seek a solution in the non-linear domain 3 in the form 

2 ~l = U.Ula(T , X, Ya) + ... .  1) = ~5/2Dla(T, X, Ya) + . . . .  I9 = O~ Pla(T ,  X, Ya) + ... (2.7) 

Substituting expressions (2.7) into the system of Navier-Stokes equations (1.2), we find 

a/'~la + 0b/la 0b/la 
a T  l g l a - - ~  + Ola-~a  -- 

OPla oC7/2Re_lnO2Ula 3pla 3uj~ 3via 
a T +  3y2a, Oy a =0,-ff~-+-~y-7 =0 (2.8) 

for the functions of the first approximation. 
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In the first equation of (2.8), the viscous and inertial terms are of the same order if the small parameter 
(x (the amplitude of the perturbations of the longitudinal velocity) and the Reynolds number Re are 
connected by relation (1.9). This case has been analysed previously [6-10]. In the following analysis, 
we shall dwell on the case when 

Re 1/7 <~ 0~ <~ 1 (2.9) 

Conditions (2.9) imply a more complex flow structure compared with that known from [6-10]. First, 
it should be noted that the coefficient oC7/2Re-1/2 of the highest derivative in the first equation of (2.8) 
becomes a small parameter. Consequently, under assumption (2.9), domain 3 is described by the system 
of equations 

3OUla bUla bula _ bpla 30pla OUla 301)ta 
+ u,~--~- + v ,~-~-  OX' bY---- 7 = O, ~ + ay---- 7 = 0 (2.10) 

The conditions for matching with solution (2.2) in the lower boundary of domain 2 (Ym ~ 0), that 
is, the limiting expressions (2.5), serve as the asymptotic boundary conditions for Eqs (2.10) in the upper 
boundary of domain 3 (Ya ~ +oo). Rewriting expressions (2.5) in the variable Ya (2.6), we obtain the 
required asymptotic form of the solutions of the system of equations (2.10) 

0A 1 
Y a - + + o o :  Ula--+ ~,l(Ya + A1), vl~-+-)vl--~-~Y ~ (2.11) 

and matching with expansions (2.5) gives 

b2Al 
Pla = -A  OX--- ~, A = f U~(~)d~ (2.12) 

o 

for the pressure. 
It can be shown that the functions 

Ula = )~l(Ya + Al) ,  bA l b A j .  ~.lAl~_~ l 1 bPla (2.13) 
VJa = -)VI"~-X Y ~ -  b---T ~1 bX 

satisfy both Eqs (2.10) and boundary conditions (2.11). 
The perturbations in domain 2 and, when condition (2.9) is satisfied, in domain 3 are therefore 

described by the inviscid equations (2.3) and (2.10); the solutions of these equations are expressed by 
formulae (2.4) and (2.13) which contain an arbitrary functionAl(T, X). However, the first equality of 
(2.13) shows that one of the non-slip conditions, in fact, Uaa = 0, is not satisfied on the wall Ya = 0. This 
is evidence of the existence of a viscous sublayer (domain 4 in Fig. 1), immediately adjacent to the wall, 
the thickness of which is much smaller than the thickness of domain 3. 

The term with the second derivative on the right-hand side of the first equation of system (2.8) becomes 
7/4 1/4 of the order of unity at distances Ya = O(c~- Re- ) from the solid wall. The above estimate, by 

determining the thickness of the viscous sublayer, dictates the need to introduce a new vertical coordinate 

Yl = 0~7/4ReI/4 Ya (2.14) 

The viscous domain 4 is characterized by the condition Yl = O(1), and the flow parameters in this 
domain are represented in the form 

2 T , . .  = O~Ull(T, X, YI) + .... v = °~3/4Re-1/4l)11( T, X, YI) + .... iv = ff~ Plz( , X, YI) + (2.15) 

Introducing expressions (2.15) into the Navier-Stokes equations (1.2) and retaining terms of the basic 
order of magnitude, we arrive at the Prandtl equations 

Oult 0l)11 bUll bull Oult bPl l+bZul l  OPll = 0, + = 0 (2.16) 
aT + av ' or, -aT 
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The solid surface, on which the following boundary condition are obvious 

Yl = 0 :  U l l  = D I /  ~- 0 (2.17) 

serves as the lower boundary of domain 4. 
The limiting condition on approaching the upper boundary Y1 ~ + ~ of domain 4 from inside follows 

as a result of matching with solution (2.13) on approaching this boundary from outside of domain 3, 
which corresponds in view of relations (2.9) and (2.14). Letting Ya --4 0 in equalities (2.13), we obtain 

YI ~ +oo: Ul l ~ ~qAI(T  ' X) (2.18) 

The second equation of system (2.16) enables us to match the pressure: P ll(T, X )  = pla(T,  X) .  Taking 
expression (2.12) into account is necessary to assume 

02Al(T, X) 
plz(T, X) = - A  (2.19) 

3X 2 

We will now show that the problem of constructing the flow field in domains 2 and 3 can be solved 
independently of the problem of the integration of problem (2.16) in domain 4. For this purpose, we 
return to the matching of the velocity components l)1a and vii- It can be seen from the representations 
(2.15) that when Ya --4 0 the function 5 must be a quantity o(RS/4Re -1/4) and comparison with (2.7) gives 

Ya ~ 0: Via = O(0~-7/4Re-1/4) (2.20) 

By virtue of inequality (2.9), the matching condition (2.20) is equivalent, apart from a small parameter 
ouT/4Re-1/4, to the impermeability condition: via = 0 when Ya = 0. However, this last condition can only 
be satisfied when the function A I(T, X) satisfies the Korteweg-de Vries equation 

OA 1 OA l A 03AI (2.21) 
0--T + ~'lAl~--X - = ~'1 0X 3 

This assertion follows from expressions (2.13) for Dla and (2.12) forpla. If the functionAffT, X) is 
found from Eq. (2.21), then the field of the perturbed flow in domains 2 and 3 is constructed using 
formulae (2.4) and (2.12), (2.13) respectively. 

Hence, the viscous boundary domain 4 plays a passive role in the formation of the inviscid flow in 
domains 2 and 3. The velocity field in domain 4 is determined from the solution of the classical problem 
(2.16)-(2.18) for a system of Prandtl equations with a specified pressure gradient (since the function 
A f f T ,  X )  in relations (2.18) and (2.19) is known). 

3. N O N - L I N E A R  P E R T U R B A T I O N S  IN THE FORM OF 
CNOIDAL WAVES 

We will assume that condition (2.9), subject to which a quadruple-level structure of the perturbed velocity 
field is realized, is satisfied and that the function for the displacement of the streamlinesAffT, X) from 
relations (2.4), (2.12) and (2.13) satisfies the Korteweg-de Vries equation (2.21). 

We eliminate the constants A and )~1 from the following equations by changing to the new variables 

• - 2 / 7 , ,  8/7 ~ . -3/7 4 5 / 7 .  • - 1/7 ~4/7  T 
t = ZX /21 I ,  X = A /21 A ,  Ya = /~ A'I Ya 

b/ = A-l/V~q 3/7 Dla, p = a A'I P1,~, Ula , 1) = A I / 7 ~ , l  4/7 A-2/7,~-6/7 -1/7 4 / 7 ,  
A = A  ~'1 A1 

(3.1) 

In variables (3.1), we have 

OA AOA 03A (3.2) 
2--7 + b--;x - 0x 3 
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Assuming 

A(x,t) = 0o(~o), ~o = X-Cot (3.3) 

in the Korteweg-de Vries equation (3.2), after a single integration (the constant of integration is taken 
to be equal to zero, which enables us to look for solutions which are decaying at infinity: q~0 -~ 0, 
It0 [ ---> oo) we obtain 

d2q~o (I) 2 

d ~  - c°qS° + 2 (3.4) 

Equation (3.4) is invariant under the single parameter group of transformations 

~0 --) 70(I)0' ~0 --) 7;1/2~0' Co -+ 70% (3.5) 

Hence, the choice of the parameter 7o = I c01 in (3.5) enables us to eliminate Co from Eq. (3.4) by means 
of the substitution 

* o  = Icol*( ), =/Co1 '2 o (3 .6)  

where, for the unknown function ~(~), we have the equation 

d20p ~2 
- - ~s ignc o + - -  (3.7) 

d~ 2 2 

We shall subsequently assume that Co < 0 since a change in the sign in front of the linear term on the 
right-hand side of Eq. (3.7) is achieved by the substitution q~ = • + 2 sign Co. As is customary, on 
introducing 

dq) d2q) dO 
o = 2 - o R 

we reduce the order of Eqs (3.7): 

tff~ 3 
I~ID2 + --5- = ~}2 + K (3.8) 

The choice of the constant K = 0 in Eq. (3.8) corresponds to the separatrix in the phase plane {~, ®} 
and leads to the equation 

dq~ ~/ q~ ( 3 . 9 )  l+ -  x 

We will consider the case when • < 0; then integration of Eq. (3.9) gives the soliton solution (tending 
exponentially to zero when { ~ ___ ~) 

qb = -3  ch -2~ - too (3.10) 
2 

Taking account of relations (3.3) and (3.6), we conclude that the soliton of the Korteweg-de Vries 
equation is determined by the following expression, which includes the two parameters Co and x0, 

~ 1 / 2  

(3.11) 

So, the soliton of the Korteweg-de Vries equation moves to the left without changing its form and 
has an amplitude which is three times greater than the modulus of its phase velocity. 
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Suppose [31, 132 and 133 are roots of the polynomial 

qb3+3qb2-3g = ((I)-]~1)((I)-132)((I)- 93) (3.12) 

Soliton (3.10) considered above is represented by a phase trajectory of Eq. (3.8) in the form of a 
loop containing the two separatrices of the saddle point • = ® = 0 and which corresponds to the multiple 
root of polynomial (3.12) for K = 0:91 = [~2 = 0, 133 = -3 where 91 > ~ > 93. Closed trajectories, 
corresponding t o  131 > 0 > [~2 > [~3 for 4/3 > K > 0, envelop the stationary point for K = 4/3 of the 
centre type q~ = -2, 19 = 0. In this case, the periodic solutions of Eq. (3.7) are described by an elliptic 
integral and, after introducing the notation 

. 2 9 2 - - ~ 3  . 2 ( I ) - - 9 3  
sm X -- 91 - 133' Sm q) -- ~ 2  -- 9 3  (3 .13)  

and replacing the variable 

(I) = 93 + (92 -- 93) sin20 

we have 

_ 24/-3 ~ dO 
~-{oo  ~ 3 o  ~/1 _ sin2% sin2 0 

(3.14) 

Suppose the constant K in Eq. (3.8) is such that 

K = 4/3-f i ,  ~ -++0  (3.15) 

It is convenient to seek the roots of polynomial (3.12) by rewriting it in terms of the new variable: 
= -2  + 4). Expression (3.12) vanishes when 

6 3 -- 3 ~  2 + 3~ --- 0 (3.16) 

It can be seen that, for small g, the largest root of Eq. (3.16) is located close to the point 4) = 3 and 
the two other roots lie in the left-hand and right-hand neighbourhoods of the point 4) = 0. More precisely, 
under assumption (3.15), we obtain from equality (3.16) that 

91= l+~E+O(t;2), ~2=-2+, ,~+~;+O(E3'2) ,  ~ 3 = - 2  -~/E+~E+O(E3,2), 
(3.17) 

f i ~ + O  

We now substitute the asymptotic form (3.17) into Eqs (3.13) and (3.14) which describe a closed phase 
trajectory. Since, from the first relation of (3.13), we have 

sin2x = ~,,/~ + 0({)  (3.18) 

equality (3.14) can be rewritten in the form 

~-~oo = +2 fqo - 1 , ] e  sin2qo + 0(~) 1 (3.19) 

The second relation of (3.13) gives 

= - 2 - ~f~ + 2S~sin2q0 + O(fi) (3.20) 

For ~ ~ +0, the relation { = ~(q0), which is defined by formula (3.19), can be inverted 

+  sio(   00, + 1 (3.21) 
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It remains to introduce expression (3.21) into the right-hand side of Eq. (3.20) in order to obtain an 
explicit form of solutions (3.14), which are described by closed phase trajectories in a small neighbour- 
hood of the singular point q5 = -2, O = 0 of the centre type: 

• = -2+3~-1-  ~]~cos(~_ ~oo ) _ l acos2(~_{oo) -  + 0 ( ~ 3 / 2  ) (3.22) 

We obtain the three-parameter family of solutions of the Korteweg-de Vries equation from relation 
(3.22) having made use of relations (3.3) and (3.6) and the notation (k is the wave number) 

k = Ic0] 1/2, k x  o = ~00+~, h = k2~/~--->0 

A periodic travelling wave with a negative phase velocity is defined by the expression 

h 2 h 2 
A ( t ,  x) = - 2k 2 + 4k 2 -  + h c o s [ k ( x  - x o + kZt)] - 1 2 k z c O S [ 2 k ( x  - x o + kZt)] + O(h 3) (3.23) 

The Korteweg-de Vries equation is invariant under Galilean transformations (changing to a system 
of coordinates moving with a velocity Do in the negative direction of the x axis) 

x --~ x - Do t ,  A ~ D O + A (3.24) 

The group property (3.24) of the Korteweg-de Vries equation enable us to introduce a further 12ara- 
meter into expression (3.23) and to drop the assumption of negative phase velocities. Putting Do = / d  + c 
in relations (3.24), we obtain a four-parameter family of wave solutions of the Korteweg-de Vries 
equation with phase velocities c of any sign 

h 2 h 2 
A ( t ,  x )  = c - k  2 + 4k 2 -  + h c o s [ k ( x -  x o -  c t ) ] -  1 2 k 2 C O s [ 2 k ( x  - x O - c t ) ]  + O(h 3) (3.25) 

IfA(t, x) is the solution of the Korteweg-de Vries equation (3.2), then the substitution 

A ~ t~A, t ---) 1~-3/2t, X --~ L%-I/2x (3.26) 

leads to the solution of the same equation. Hence, all the solutions (3.23) and (3.25) are obtained from 
the steady solution of the Korteweg-de Vries equation 

h 2 h 2 
A = - 1 +-~- + h c o s x -  ~ c o s 2 x  + O(h 3) (3.27) 

by applYing the group transformations (3.24) and (3.26). 
The function am(f21N), which is the inverse of the function 

~p 
= !d dO 

1 - ~ s i n 2 0  

is called a Jacobi amplitude [11] and the function 

cn(~2lN) = cos[am(f2lt~)] 

is known as a Jacobi elliptic cosine (a cnoid). The above-mentioned functions enable us to represent 
the implicit relation (3.13), (3.14) in the form 

(3.28) 
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The quarter period K = K(N) of the function cn(~[ N) and the parameter N are determined by means 
of (3.13) and (3.14), namely 

~/2 ~2 - ~3 
dO , N = sin2)~ - 131-_-~3 

= dl- sin2O 

Periodic non-linear solutions of the type (3.28), which are called cnoidal waves [12, 13], possess, as 
has been shown above, the representation (3.25) in the weakly non-linear limit of small amplitudes 

= +0. 

4. N A R R O W I N G  T H E  CLASS OF P O S S I B L E  S O L U T I O N S  BY T A K I N G  
A C C O U N T  OF T H E  V I S C O U S  B O U N D A R Y  

The class of oscillatory solutions of the non-linear system of equations (2.10) which is defined by 
Eq. (3.8) when 0 < K < 4/3 and, in the case of small amplitudes h, admits of representations (3.25) 
and (3.27), describes the motion in the domain Ya -- O(1). However, solutions from this class do not 
satisfy the no-slip condition Ua = 0 on the wall Ya -- 0, as can be seen from the first equality of (2.13). 
This fact is indicative of the existence, which has already been noted above, of a thin sublayer Yl - O(1) 
in the flow with an estimate of its thickness (2.14), in which the structure of the velocity field is formed 
by viscous shear stresses (domain 4 in Fig. 1). 

We will also rewrite boundary condition (2.16)-(2.19) in the new variables (3.1) having added the 
quantities 

--.-- A_1/7~.73/7 = ml/7)v14/7 = A-2/7~16/7 . 1/7~4/7 u~ u~t, vt 191~, Pt P ~ ,  Y = zx A~ Y~ 

to them. 
Then, for the viscous boundary sublayer, we have 

Ou l ~v l Obl I OU l OU l Opl 02Ul Op......._[ = O, = 0 
3 t  + ul-~x + vl-3y - 3x + ---2'  3y -~x + ~ (4.1) 3y 

y = 0: u t = v t = 0; y--~ +oo: u l--> A(t,  x) 

As a consequence of Eq. (2.19), the pressure in relations (4.1) is the specified function 

p / t ,  x) - 32A(t, x) (4.2) 
Ox 2 

We take the solution of the Korteweg-de Vries equation (3.25) as the outer boundary condition for 
the inner problem (4.1), (4.2) in the viscous boundary sublayer. It will be shown below that a periodic 
solution in the viscous sublayer does not exist for all c and k in Eq. (3.25) but only in the case when a 
definite relation between them in satisfied. Since Eqs (4.1) are also invariant under the transformations 
(3.24): 

x--~ x -  Dot , A ---~ Do + A,  ut---> Do + u l (4.3) 

we will change to a system of coordinates where the wave (3.25) is stationary, that is, in relations (3.24) 
and (3.25), we put Do = -c. We now also turn our attention to the invariance of problem (4.1) with 
respect to the one-parameter group of transformations 

--) "0-1/2 '0-3/4 ,03/4 2 t -") ,0-3/2t, X X, Y --~ Y, ut --> ,0ul, vt --> vt, Pt --~ ,0 Pt (4.4) 

The application of these transformations implies that the boundary function A(t ,  x), occurring in 
relations (4.1) and (4.2), transforms in accordance with the substitution (3.26). 

In Eq. (3.25), we now discard the unimportant constantx0 and make the replacement (3.24), by putting 
Do -- -c and, also, the substitution (3.26), by choosing 0 = k -2. As a result, by redesignating h --+ hk  2, 
we obtain Eq. (3.27). We now sequentially carry out the transformations (4.3) and (4.4) as applied to 
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problem (4.1) with exactly the same choice olD0 and O. The construction of the inner solution in the 
viscous boundary sublayer, which is generated by the outer boundary-value condition (3.25), reduces 
to solving the steady boundary-value problem 

OU l OU l 3 p  l + 32Ul 3pl  3U l 31.) 1 

+ = - 3X 3y2'  -gy = ° '  G + = °  

y = 0 :u  z = c w, v z = 0; y--++oo:ut--+A(x) 

(4.5) 

The parameter cw = -ck -2 is the velocity of the wall along the tangent to itself, the function A ( x )  is 
given by expression (3.27) and the pressure gradient is calculated using the steady-state analogue of 
relation (4.2). It will be subsequently seen that the quantity % cannot be arbitrarily specified. 

So, in the case when 

h 2 h 2 h 2 h ix h -ix 2ix -2ix 
a = - l + - ~ - + ~ e  + ~ e  -~-~e -~-~e 

OPt ih  ix ih  -ix ih  2 2ix ih  2 -2ix 
3 x  2 e ~-e - - ~ - e  + - f - e  +. . .  

+ . . .  

(4.6) 

we introduce the constants mo, m~ and m2, which are to be determined and consider the expansion 

c w = m o + h m  l + h 2 m z + O ( h  3) (4.7) 

It is clear that, for m0 ~ -1, the solution of problem (4.5), (4.6) in the case when h = 0 is expressed in 
terms of the Blasius function, which depends on the self-similar variable yx  -1/2 and is not periodic. It 
therefore follows that m0 = -1 is taken. The last equality enables us to seek the solution of problem 
(4.5), (4.6) in the form 

u t = 1 + h q o ( y  ) + h 2 f o ( y )  h f ' l ( y ) e  ix - ,  -ix - ' - - h f i e  - h 2 f ' 2 ( y ) e  2 i x -  h 2 f 2 ( y ) e  -2ix + O(h 3) 

1)l = ih  f l ( Y )eiX _ ih  f l ( y  )e_i x + 2 i h  2 f 2(y  )e2iX _ 2 i h  2 f 2(y  )e_2ix + O(h3 ) (4.8) 

where a bar above a symbol denotes a complex conjugate and a prime denotes a derivative with respect 
to y. The equations 

t f t  , i i i ~  

f l  + t f l  = - i / 2 ,  q0 = 0 (4.9) 

are true in the first approximation in the parameter h. 
The boundary conditions for Eqs (4.9) follow from relations (4.5), (4.6) and (4.8) 

i t 

y --.) +oo: f l  --') - 1 / 2 ,  q0 ---> 0 (4.10) 
i w 

y = 0 : f l  = f l  = 0, q0 = ml (4.11) 

From the second equation of (4.9) and the second limiting condition of (41.10), we obtain q~ - 0. This 
means that ml = 0. The first equation of (4.9) gives 

, , . +  "~y - - z y  

f l  = - 1 / 2 + M l e  +Mle  , "¢ = (1- i ) / , , /~  (4.12) 

The requirement that there is no exponential growth when y --4 +~o on the right-hand side of 
Eq. (4.12) is sufficient to satisfy the limiting condition (4.10) and, therefore, the constant My = 0, and 
the other constant in Eq. (4.12) is determined by the first boundary condition of (4.11), that is, M~ = 1/2. 
Integrating Eq. (4.12), taking account of the first boundary condition of (4.11), we obtain 

f l  = - y / 2  + ( 1 - e -~Y) / (2x)  (4.13) 
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In the second approximation in the parameter h, substitution of expressions (4.8) into Eqs (4.15) 
leads to the equations 

f2  +2if '2 i / 3 - i f ' l  2 . . . . . .  - "  "- " '" = + l f l f l ,  fo  = - l f l f l  + t f l f I  

As the boundary conditions for Eqs (4.14), from relations (4.6) and (4.8) we have 

(4.14) 

y = 0 : f 2  = f '  = ' = 2 0, fo m2 (4.16) 

We shall initially consider only the first equation of (4.14) which, after substitution of the function 
fl  of the first approximation of (4.13) into its right-hand side, has a general solution of the form 

f'2 = 1/24 + ('cy - 1)e-ZY/4 + M2 e'~zSy + M2 e-*~y 

(M~ and M2 are arbitrary constants). We now eliminate the exponentially increasing term from this 
solution by putting M~ = 0, after which we will show that the first limiting condition of (4.15) is satisfied. 
The equality M2 = 5/24 ensures that the first boundary condition of (4.16) is satisfied. Then, by again 
taking account of the first condition of (4.16), we obtain 

f2 = [Y( 1 - 6e -'cy) + 5( 1 - e-~Y)/( '~dr})] /24 (4.17) 

We now consider the second equation of (4.14). The first condition of (4.11) enables us to simplify 
this equation by integrating its right-hand side by parts. We have 

I v  i i  . - i - t  

f o ( y ) - f o ( O )  = t f l ( y ) f l ( Y ) - i f l ( Y ) f l ( y )  (4.18) 

Using the notation 

y 

I . - t  
l (y )  - [ i f l ( s ) f ' l ( s  ) -  t f l ( s ) f l ( s ) ] d s  

o 

from expression (4.13) we derive the equality 

I (y)  = ~[3 - y4~ + e -~y  - ('cy + 2 + i)e -~y - (~y + 2 - i)e -ty] (4.19) 

The equivalent way of writing Eq. (4.18) has the form 

fo (Y)  = Eo + ElY + I(Y); Eo = f'o(0), E1 = fo'(0) (4.20) 

where E0 and E1 are arbitrary constants. We choose E 1 = "/2/4. Then, in accordance with expression 
(4.19), there will be no linearly increasing terms on the right-hand side of Eq. (4.23), that is, a finite 
limit 

lim [Ely  + l ( y ) ]  = 3/4 (4.21) 
y --> + ~  

exists. 
On the other hand, the asymptotic condition (4.15) shows that the limit of (4.21), which is being 

considered, is equal to 

lira [f0(Y) - f0(0)] = 1 /4-  E 0 (4.22) 
y ~ . + ~  

Comparison of relations (4.21) and (4.22) gives E 0 = -1/2. Hence, the constants E0, and El, and thereby 
also the function go = f ; (Y) ,  are found in a unique manner from the second equation of (4.14) and the 
second limiting condition of (4.15). Since the boundary condition (4.16) does not participate in the 

i i 
Y--~ +~: f2 ~ 1/24, fo = 1/4 (4.15) 
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definition of the function go, it can only be satisfied in the case of a special selection of the parameter 
m 2 . 

So, by puttingy = 0 in Eq. (4.20), in accordance with condition (4.16), we find 

m 2 -- -1/2 (4.23) 

Consequently, a solution of problem (4.5), (4.6) which is 2re-periodic in the variables x exists in the 
domainy > 0 and is expressed by formulae (4.8), (4.13), (4.17), (4.19) and (4.20) if the tangential velocity 
Cw of the boundary of the domain y = 0, appearing in problem (4.5), is related to the amplitude h of 
the limiting functions from the expressions (4.6) as follows: 

c w = - 1 - h 2 / 2  + O(h 3) (4.24) 

We will now change to a system of coordinates in which the wall is stationary, making use of the fact 
that the system of Prandtl equations in invariant under the transformations (4.3). To do this, it is sufficient 
to put Do = I c~ I in relation (4.3), where Cw is given by expression (4.24). As a result, we obtain a non- 
stationary solution, which is periodic in both x and t. Finally, the period of the oscillatory solution can 
be chosen arbitrarily due to the invariance of the Prandtl equations under the transformations (4.4). 
In relation (4.4), we now put h = k2h  and use the notation t~ = k 2. Successive application of the 
transformations (4.3) and (4.4), with the parameters Do and t~ mentionedabove, generates a family of 
solutions of problem (4.1) which depends on the three parameters c, k and h. Whenyl + + ~ ,  this family 
of solutions possesses the asymptotic form ul - -+A(x ,  t), where the limiting f u n c t i o n A ( x ,  t) is obtained 
from the first expression of (4.6) by means of the above-mentioned transformations (4.3) and (4.4) 

3h2-- hc°s[k(x ~2 
A ( t ,  x )  = + - c t ) ]  - 1 2 k 2 C O s [ 2 k ( x  - c t ) ]  + O(~z 3) (4.25) 

4k 2 

and, moreover, as a consequence of Eq. (4.24), the parameters c, k and ~ are not independent but are 
subject to the relation 

---- k 2 ~2 
c + - -  + O(h 3) (4.26) 

2k 2 

The function (4.25) is the solution of the Korteweg-de Vries equation (since this equation is invariant 
under the transformations (3.24) and (3.26)). Expression (4.25) is a contraction of the three-parameter 
family of solutions (3.25) due to relation (4.26). This relation arises from the condition for a periodic 
solution to exist in the viscous boundary sublayer 4 (the inner solution for which (3.25) is the outer 
solution relating to domain 3). 

We now point out another method for determining the constant (4.23) starting from the necessary condition 
for the existence of a 2~-periodic solution of the Prandtl boundary layer equations, formulated by Wood [14]. For 
this purpose, we note that, by means of the transformation 

1/2 ̂  
. y Cw y, " +wl , =lcwl 1'2 , = = = p = ]Cwl p, A = - I c w l U ~  

problem (4.5) can be reduced to the problem of a classical boundary layer. The quantity cw in chosen in accordance 
with expressions (4.7) and, as was shown above, m0 = -1, rnl = 0. 

Actually, in the case of the problem of a classical boundary layer, the above-mentioned condition for a 2~-periodic 
solution to exist [14] states that 

2g 
U 3 f ( ~ -  Uo)d2 = O(h 4) (4.27) 

0 

where U=(~) is a specified (2~-periodic) function. 
We now substitute the expansion of the function A, in accordance with the first expression of (4.6) and the 

representation (4.7) of the parameter %, into the limiting function U= = -Icw IA q. We then obtain 

2 h  2 
U3~ - U~  = 2 m 2 h  2 - 2 h c o s x  + 2 h 2 c o s 2 x  + - - ~ - c o s z x  + O ( h  3) (4 .28)  

as the integrand in Eq. (4.27). 
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The integral along the segment [0, 2n] of terms up to O(h 2) inclusive occurring in the function (4.28) has to be 
equated to zero in accordance with condition (4.27), which leads to a value for the unknown constant m 2 which is 
identical with the value (4.23). 

This  r e sea rch  was s u p p o r t e d  f inancial ly by the Russ ian  F o u n d a t i o n  for  Basic Resea rch  (04-01-00807 
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